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Abstract
Solid isotopic helium mixtures have been studied by path-integral Monte Carlo
simulations in the isothermal–isobaric ensemble. This method allowed us to
study the molar volume as a function of temperature, pressure, and isotopic
composition. At 25 K and 0.2 GPa, the relative difference between molar
volumes of isotopically pure crystals of 3He and 4He is found to be about 3%.
This difference decreases under pressure, and for 12 GPa it is smaller than 1%.
For isotopically mixed crystals, a linear relation between lattice parameters and
concentrations of helium isotopes is found, in agreement with Vegard’s law. The
virtual crystal approximation, valid for isotopic mixtures of heavier atoms, does
not give reliable results for solid solutions of helium isotopes.

1. Introduction

The lattice parameters of two chemically identical crystals with different isotopic composition
are not equal, lighter isotopes giving rise to larger lattice parameters. This is due to the
dependence of atomic vibrational amplitudes upon atomic mass, along with the anharmonicity
of the vibrations. This effect is most important at low temperatures, since the zero-point
amplitude decreases with increasing atomic mass. At higher temperatures, the isotope effect
on the crystal volume is less relevant, and disappears in the high-temperature (classical) limit
at T > �D (�D, Debye temperature), where vibrational amplitudes become independent of
the atomic mass. At present, the isotopic effect on the lattice parameters of crystals can be
measured with high precision [1].

Other quantities, such as the vibrational energy, display an isotope dependence at low
T in a harmonic approximation, due to the usual rescaling of the phonon frequencies with
the isotopic mass M (ω ∝ M−1/2), but this dependence can show appreciable changes when
anharmonic effects are present. All these effects are expected to be more important in the
case of helium than for heavier atoms. In fact, solid helium is in many respects an archetypal
‘quantum solid’, where zero-point energy and associated anharmonic effects are appreciably
larger than in most known solids. This gives rise to peculiar properties, whose understanding
has presented a challence for theories and modelling from a microscopic point of view [2].
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Anharmonic effects in solids, and in solid helium in particular, have been studied
theoretically for many years by using techniques such as quasiharmonic approximations and
self-consistent phonon theories [3–5]. An alternative procedure is based on the Feynman path-
integral formulation of statistical mechanics [6, 7], which has turned out to be a convenient
approach for studying thermodynamic properties of solids at temperatures lower than their
Debye temperature �D, where the quantum character of the atomic nuclei is relevant. In
particular, Monte Carlo or molecular dynamics sampling can be applied to evaluate finite-
temperature path integrals, thus allowing one to carry out quantitative and non-perturbative
studies of anharmonic effects in solids [2].

The path-integral Monte Carlo (PIMC) method has been employed to study several
structural and thermodynamic properties of solid helium [2, 8–11], as well as heavier rare-gas
solids [12–17]. For helium, in particular, this procedure has predicted kinetic-energy values [8]
and Debye–Waller factors [18] in good agreement with data derived from experiments [19, 20].
PIMC simulations have also been performed to study the isotopic shift in the helium melting
pressure [9, 10].

In most calculations of properties of crystals with isotopically mixed composition, it is
usually assumed that each atomic nuclei in the solid has a mass equal to the average mass. This
kind of virtual–crystal approximation has been used in density-functional calculations, as well
as in PIMC simulations [17, 21–25]. In fact, in earlier simulations it was found that the results
obtained by using this approximation are indistinguishable from those derived from simulations
in which actual isotopic mixtures were considered. This seems to be true for atoms heavier than
helium, and in particular for rare-gas solids including solid Ne [17], but it is not guaranteed to
happen for solid helium, due to its low atomic mass and large anharmonicity.

It is well kown that at temperatures lower than 1 K, a phase separation appears in solid
3He–4He mixtures, and the actual temperature at which this separation occurs depends on
pressure and isotopic composition [26, 27]. This isotope segregation is due to the different
molar volume of both isotopes, which in turn is caused by the different zero-point vibrational
amplitudes of 3He and 4He [27, 28]. In this paper, we consider mixtures of helium isotopes
at higher temperatures, where 3He and 4He form solid solutions for any isotopic composition.
By varying the molar fraction of both isotopes, we analyse changes in the lattice parameter
and kinetic energy, by using PIMC simulations. We employ the isothermal–isobaric (NPT)
ensemble, which allows us to consider properties of these solid solutions along well-defined
isobars. This simulation method permits to study properties of actual isotopic mixtures, and
compare them with those obtained for virtual crystals in which each atom has a mass equal to
the average mass of the considered isotope mixture.

The paper is organized as follows. In section 2, the computational method is described. In
section 3 we present the results, and section 4 includes a discussion and the conclusions.

2. Method

Equilibrium properties of solid helium in the face-centred cubic (fcc) and hexagonal close-
packed (hcp) phases have been calculated by PIMC simulations in the NPT ensemble. Our
simulations were performed on supercells of the fcc and hcp unit cells, including 500 and 432
atoms, respectively. These supercell sizes are enough for convergence of the quantities studied
here [29]. For a given average isotopic mass M , we randomly distribute 3He and 4He atoms
in the appropriate proportions over the lattice sites of the simulation cell, and the atoms are
kept fixed at their respective positions along the simulation (no diffusive positional changes).
This is assumed to be valid for the temperatures studied here, much higher than those at which
phase separation appears (T < 1 K) [26, 27]. For each isotopic composition studied here,
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we have taken five different realizations of the isotope mixture. To analyse in more detail the
dispersion in the lattice parameters obtained in the simulations, we took 12 different samples for
M = 3.25 amu and 15 samples for M = 3.5 amu (see below). For comparison, we have also
considered virtual crystals, in which every atom has a mass M , i.e. Mi = M for i = 1, . . . , N .

Helium atoms have been considered as quantum particles interacting through an effective
interatomic potential, composed of a two-body part and a three-body part. For the two-
body interaction, we have taken the potential developed by Aziz et al [30] (the so-called
HFD-B3-FCI1 potential). For the three-body part we have employed a Bruch–McGee-type
potential [31, 32], with the parameters given by Loubeyre [32], but with parameter A in the
attractive exchange interaction rescaled by a factor of 2/3, as in [10]. This interatomic potential
has been found to describe the vibrational energy and equation of state of solid helium well in
the available range of experimental data, including pressures on the order of 50 GPa [29].

The PIMC method relies on an isomorphism between the considered quantum system and
a classical one, obtained by replacing each quantum particle by a cyclic chain of NTr classical
particles (NTr: Trotter number), connected by harmonic springs with a temperature-dependent
constant. This isomorphism appears because of a discretization of the density matrix along
cyclic paths, which is usual in the path-integral formulation of statistical mechanics [6, 7].
Details of this computational method can be found elsewhere [2, 33, 34].

Our simulations were based on the so-called ‘primitive’ form of PIMC [35, 36]. We
considered explicitly two- and three-body terms in the simulations, which did not allow us to
employ effective forms for the density matrix, developed to simplify appreciably the calculation
when only two-body terms are considered explicitly [10]. Quantum exchange effects between
atomic nuclei were not taken into account, since they are negligible for solid helium at the
temperatures and pressures studied here. (This is expected to be valid as long as there are no
vacancies and T is higher than the exchange frequency ∼10−6 K [2].) For the energy, we have
used the ‘crude’ estimator, as defined in [35, 36].

Sampling of the configuration space has been carried out by the Metropolis method at
pressures P � 12 GPa, and temperatures between 10 K and the melting temperature at each
considered pressure. However, most of the simulations presented in this paper were carried
out for fcc He at 25 K and 0.3 GPa, conditions at which the isotopic effects studied here are
clearly observable. Some simulations were also carried out at lower temperatures (see below).
For a given temperature and pressure, a typical run consisted of 104 Monte Carlo steps for
system equilibration, followed by 105 steps for the calculation of ensemble average properties.
To keep roughly constant the accuracy of the computed quantities at different temperatures,
we have taken a Trotter number that scales as the inverse temperature 1/T . At a given T , the
value of NTr required to reach convergence of the results depends on the Debye temperature,
higher �D requiring larger NTr. Since vibrational frequencies increase as the applied pressure
rises, NTr has to be raised accordingly. For pressures on the order of 1 GPa, NTrT = 2000 K
is enough to reach convergence of the computed quantities. For pressures larger than 2 GPa,
we have taken NTrT = 4000 K for 3He and 3000 K for 4He, as in earlier work [29]. Other
technical details are the same as those employed in [16, 29, 37].

In the isothermal–isobaric ensemble, the mean-square fluctuations in the volume V of the
simulation cell are given by

σ 2
V = V

B
kBT, (1)

where B = −V (∂ P/∂V )T is the isothermal bulk modulus [38]. Hence, for a cubic crystal, the
fluctuations in the lattice parameter a are:

σ 2
a = kBT

9L3a B
, (2)
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Figure 1. Convergence of the lattice parameter a of fcc He as a function of the inverse Trotter
number, N−1

Tr , as derived from PIMC simulations at T = 25 K and P = 0.3 GPa. Squares and
circles correspond to 3He and 4He, respectively. Dashed lines are guides to the eye. Error bars are
smaller than the symbol size.

where L3 is the number of unit cells in a simulation cell with side length La. From equation (1)
one can see that the relative fluctuation in the volume of the simulation cell, σV /V , scales
as L−3/2. For 4He at 25 K we found in PIMC simulations that σV /V = 5.5 × 10−3 for
P = 0.3 GPa, and 1.7 × 10−3 for 12 GPa (for L = 5 and 500 atoms). For fcc 4He at 0.3 GPa
this translates into σa = 7.3 × 10−3 Å. We are interested in an accuracy in a on the order of
10−4 Å, which means that, at this temperature and pressure, one needs about 104 independent
data. In practice, the required number of Monte Carlo steps is expected to be larger, due to
correlation between configurations along a Monte Carlo trajectory. In fact, we have checked
that 105 Monte Carlo steps are enough to have a statistical uncertainty in a on the order of
10−4 Å.

3. Results

We have checked the convergence with the Trotter number of several quantities derived from
our PIMC simulations. In figure 1 we display the dependence of the lattice parameter a of fcc
3He and 4He as a function of the inverse Trotter number N−1

Tr , for T = 25 K and P = 0.3 GPa.
The lattice parameter obtained in the simulations increases with NTr and converges to a finite
value for large NTr (limit N−1

Tr → 0 in figure 1). The difference δa = a3 − a4 between
the lattice parameters of 3He and 4He decreases as the Trotter number is lowered, and goes
to zero in the classical limit (NTr = 1), where this isotopic effect disappears. The reliability
of the interatomic potential employed here to predict lattice parameters of solid helium has
been studied elsewhere [29]. Here we will only comment that it gives good agreement
with experimental results up to the melting temperature in the pressure range considered in
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Figure 2. Temperature dependence of the lattice parameter a of fcc helium, derived from PIMC
simulations at two different pressures: 0.3 and 0.6 GPa. Squares and circles indicate results for 3He
and 4He, respectively. Error bars are smaller than the symbol size. Dashed lines are guides to the
eye.

this paper. Thus, for fcc 4He at 38.5 K and 0.493 GPa we find a = 3.9154 Å, versus
3.915(2) Å derived from inelastic neutron scattering [39].

Once we have checked its convergence with NTr, in figure 2 we show the temperature
dependence of the lattice parameter a of fcc 3He and 4He at two different pressures: 0.3 GPa
(open symbols) and 0.6 GPa (filled symbols). Squares correspond to 3He and circles to 4He.
For each pressure, results are displayed for temperatures at which the considered solids were
found to be stable along the PIMC simulations. As expected, a is larger for 3He than for 4He,
and the difference δa = a3 − a4 is smaller for higher pressure. Also, for a given pressure, δa
decreases slowly as the temperature is raised (at higher T the solid becomes ‘more classical’).

To quantify the change in crystal volume with isotopic mass, we calculate the ratio
δV/V4 = (V3 − V4)/V4. This ratio is shown in figure 3 as a function of pressure for fcc (filled
symbols) and hcp He (open symbols) at 25 K. At P = 0.2 GPa, we find δV/V4 = 0.030.
This value is reduced by more than a factor of 3 at P = 12 GPa, where we obtain δV/V4 =
7.7 × 10−3. It is interesting to note that at P = 1 GPa, both fcc and hcp phases could be
simulated at 25 K, remaining (meta)stable along the corresponding simulation runs. The ratio
δV/V4 obtained in both cases is shown in figure 3, and the results coincide within statistical
errors. Direct experimental measurements of this isotopic effect on the molar volume are
scarce. Stewart [40] measured the molar volumes of both 3He and 4He at 4.2 K and pressures
of up to 2 GPa. In particular, for P = 0.3 and 0.6 GPa he found V4/V3 = 1.023. At these
pressures, we found, for the low-temperature limit in the PIMC simulations, V4/V3 = 1.026(1)

and 1.023(1), respectively.
The difference δV is largest at small pressures and low temperatures, where quantum

effects are most important. For a given solid, quantum effects on the crystal volume can be
measured by the difference V − Vcl between the actual volume V and that obtained for a

5



J. Phys.: Condens. Matter 19 (2007) 156208 C P Herrero

Figure 3. Isotopic effect on the crystal volume of solid helium, as obtained from PIMC simulations.
Shown is the ratio δV/V4 = (V3−V4)/V4 as a function of pressure at 25 K. Open and filled symbols
correspond to hcp and fcc phases, respectively. Error bars are less than the symbol size. The dashed
line is a guide to the eye.

‘classical’ crystal of point particles, Vcl. This difference decreases for increasing atomic mass
and temperature [13, 41]. From our PIMC simulations at T = 25 K and a relatively low
pressure of 0.3 GPa, we found an increase in the volume of solid 3He and 4He of 26% and 22%
respectively, as compared to the ‘classical’ crystal at zero temperature.

PIMC simulations allow us to obtain the kinetic energy of the different atoms in the
simulation cell at finite temperatures. For pure fcc crystals of 3He and 4He, we find a kinetic
energy Ek = 9.22 and 8.21 ± 0.03 meV/atom, respectively (at 25 K and 0.3 GPa). This
translates into a kinetic-energy ratio of 1.12, slightly lower than the ratio between zero-point
energies expected in a harmonic approximation (E3

0/E4
0 = √

4/3 = 1.15). These energy
values are similar to those obtained earlier from PIMC simulations in the NVT ensemble. In
particular, our results for 4He (giving a molar volume of 9.95 cm3 mol−1) are in line with those
obtained earlier in the NVT ensemble at temperatures close to 25 K and molar volumes of
around 10 cm3 mol−1 [18], which in turn agree with experimental measurements [42].

For isotopically mixed crystals, one expects the kinetic energy Ek of the whole crystal to
evolve smoothly as a function of the mean isotopic mass M . In figure 4 we show the kinetic
energy of fcc helium versus M at 25 K and 0.3 GPa, as derived from our PIMC simulations.
Within the precision of our results, we observe a linear dependence of Ek versus M , as indicated
by the dashed line. We have compared these results with those obtained from PIMC simulations
for the virtual crystal with mass M , and found that differences between both sets of results are
smaller than the statistical noise. A discussion on the relation between vibrational kinetic and
potential energies in solid helium has been given elsewhere [29], and will not be repeated here.

Going back to the lattice parameter of fcc He, in figure 5 we display the dependence of a
on the average isotopic mass, at 25 K and 0.3 GPa. Open squares correspond to simulations
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Figure 4. Kinetic energy of fcc helium as a function of the mean isotopic mass M in isotopically
mixed crystals. Symbols are results of PIMC simulations at 25 K and 0.3 GPa. The dashed line is a
linear fit to the data points.

in which 3He and 4He atoms were randomly distributed over the crystal sites, according to the
required average mass M . The results show a linear dependence of a on M . In figure 5 we also
show results of PIMC simulations of fcc He, where each atom has a fictitious mass M (Mi = M
for i = 1, . . . , N). This virtual–crystal approximation yields for M different from 3 and 4 amu
a lattice parameter smaller than that obtained for a realistic distribution of isotopes over the
simulation cell. For an isotopic mixture including 50% of each isotope, we find a = 4.061 62 Å
versus avc = 4.059 50 Å for the virtual–crystal approximation, i.e. a difference between both
models a −avc = 2.12×10−3 Å. For this composition we have considered 15 different isotope
distributions, and found for the lattice parameter a standard deviation σ = 2.5×10−4 Å, a little
smaller than the symbol size in figure 5. Thus, the difference a − avc amounts to about 8σ . For
75% 3He, we took 12 realizations of the isotope mixture, and found a − avc = 1.64 × 10−3 Å.
In this case, σ = 2.8 × 10−4 Å, or a − avc ≈ 6σ .

4. Discussion

Path-integral Monte Carlo simulations have been found to be well suited to study finite-
temperature anharmonic effects on structural and thermodynamic properties of crystalline
solids. These effects are particularly important for solid helium, where isotopic effects are
relevant, as manifested in differences in the molar volume and vibrational energies of solid
3He and 4He. The PIMC method enables us to study phonon-related properties without
the assumptions of quasiharmonic or self-consistent phonon approximations, and to study
anharmonic effects in solids in a non-perturbative way. Thus, for a given reliable interatomic
potential, this method yields, in principle, ‘exact’ values for measurable properties of many-

7



J. Phys.: Condens. Matter 19 (2007) 156208 C P Herrero

Figure 5. Lattice parameter a of fcc helium as a function of the mean isotopic mass M . Data
points were obtained from PIMC simulations at 25 K and 0.3 GPa, for isotopically mixed crystals
containing 3He and 4He (squares), and for virtual crystals built up by atoms with the average isotopic
mass (circles). Error bars are smaller than the symbol size. The dashed line is a least-square fit to
the data points (squares). The dotted line was obtained from a quasi-harmonic approximation using
equation (5).

body quantum problems, with an accuracy limited by the imaginary-time step (Trotter number)
and the statistical uncertainty of the Monte Carlo sampling.

Our results for the lattice parameter of solid helium as a function of the average isotopic
mass (see figure 5) can be understood in terms of the theory of alloys. In fact, 3He and 4He
behave in this respect as atoms with different atomic radii, as a consequence of the different
vibrational amplitudes of both isotopes. If we consider a 4He crystal with 3He impurities, the
lattice expansion �a due to these impurities is given by Vegard’s law [43, 44]:

�a

a4
= βC3, (3)

where C3 is the concentration of 3He. From the data presented in figure 5 we find an expansion
coefficient β = 1.49 × 10−25 cm3/atom. According to our results, this linear relation between
lattice parameter and isotope concentration holds for the whole concentration range, as shown
in figure 5 (squares and dashed line). This is in agreement with earlier calculations for alloys,
which indicate that, for a difference between atomic radii of less than ∼5%, one does not
expect an appreciable departure from linearity [44]. In fact, 3He and 4He behave as atoms with
a difference in effective atomic radii of about 1% (for the T and P considered here).

The virtual–crystal approximation has been employed earlier to study the dependence of
lattice parameters on the average isotopic mass. This can conveniently be done by using a
quasiharmonic approach, according to which the low-temperature lattice parameter a for the
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mean isotopic mass M can be approximated by [21]

a = a∞ + 1

6Ba2∞

∑

n,q

h̄ωn(q)γn(q). (4)

Here, ωn(q) are the frequencies of the nth mode in the crystal, B is the bulk modulus, a∞
is the zero-temperature lattice constant in the limit of infinite atomic mass (classical limit),
and γn(q) = −∂ ln ωn(q)/∂ ln V is the Grüneisen parameter of mode n, q. Assuming a mass

dependence of the frequencies ωn(q) ∼ M
−1/2

, one finds for the relative change in lattice
parameter with isotopic mass

a ≈ a∞ + AM
− 1

2 , (5)

where A is constant for a given pressure. By applying this equation to a3 and a4, we can find
A, and then the dependence of a on M shown in figure 5 as a dotted line. This line coincides,
within error bars, with the results derived from the PIMC simulations for helium with Mi = M
for all i (virtual crystal). Note that the low-temperature expression for the lattice parameter
given in equation (4) is a good approximation for the conditions (P, T ) considered here. In
fact, for a volume of ∼10 cm3 mol−1, a temperature of 25 K can be considered to be a ‘low
temperature’ compared with �D � 120 K [19].

It is worth commenting on the difference found between this quasiharmonic approximation
and the actual isotope distribution over the crystal. For the virtual crystal we found, in both
PIMC simulations and in the quasiharmonic approach, a nonlinear dependence of the lattice
parameter a on the average isotopic mass. This contrasts with the linear dependence derived
from PIMC simulations for actual distributions of isotopes. (If a departure from linearity
appears in this case, it will be smaller than the precision of our results.) This observation
is important for the helium solid solutions considered here, since in most known solids both
approaches give the same results [17, 21, 25]. From the results displayed in figure 5, we observe
for M = 3.5 amu a difference a − avc = 2.1 × 10−3 Å, which amounts to about 0.05% of
the lattice parameter. This relative difference is much larger than the uncertainty in structural
parameters currently derived from diffraction methods [1].

In the last few years, several authors have indicated that pressure causes a decrease
in anharmonicity [45–47], in agreement with earlier observations that the accuracy of
quasiharmonic approximations increases as pressure is raised and the density of the solid
increases [48, 49]. This is also the origin of the decrease in the isotopic effects studied
here, as pressure is raised. Since these isotopic effects are caused by anharmonicity of the
interatomic interactions, an effective decrease in anharmonicity causes a reduction in the
difference δa = a3 − a4 or, equivalently, in the ratio δV/V4 shown in figure 3.

In summary, we have carried out PIMC simulations of solid solutions of helium isotopes
in the isothermal–isobaric ensemble. Our results indicate that Vegard’s law is fulfilled in the
whole composition range, i.e. the crystal volume changes linearly with isotopic composition.
This volume change decreases appreciably as pressure is raised, but it is still clearly observable
at pressures of the order of 10 GPa. Approximations such as virtual crystals with average
atomic mass are not valid for solid isotopic helium mixtures.

Acknowledgments

The author benefitted from discussions with R Ramı́rez. This work was supported by the
Ministerio de Educación y Ciencia (Spain) through grant no. FIS2006-12117-C04-03.

9



J. Phys.: Condens. Matter 19 (2007) 156208 C P Herrero

References

[1] Kazimorov A, Zegenhagen J and Cardona M 1998 Science 282 930
[2] Ceperley D M 1995 Rev. Mod. Phys. 67 279
[3] Klein M L and Venables J A (ed) 1976 Rare Gas Solids (New York: Academic)
[4] Srivastava G P 1990 The Physics of Phonons (Bristol: Adam Hilger)
[5] Valle R G D and Venuti E 1998 Phys. Rev. B 58 206
[6] Feynman R P 1972 Statistical Mechanics (New York: Addison-Wesley)
[7] Kleinert H 1990 Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (Singapore: World

Scientific)
[8] Ceperley D M, Simmons R O and Blasdell R C 1996 Phys. Rev. Lett. 77 115
[9] Barrat J L, Loubeyre P and Klein M L 1989 J. Chem. Phys. 90 5644

[10] Boninsegni M, Pierleoni C and Ceperley D M 1994 Phys. Rev. Lett. 72 1854
[11] Chang S Y and Boninsegni M 2001 J. Chem. Phys. 115 2629
[12] Cuccoli A, Macchi A, Tognetti V and Vaia R 1993 Phys. Rev. B 47 14923
[13] Müser M H, Nielaba P and Binder K 1995 Phys. Rev. B 51 2723
[14] Chakravarty C 2002 J. Chem. Phys. 116 8938
[15] Neumann M and Zoppi M 2002 Phys. Rev. E 65 031203
[16] Herrero C P 2002 Phys. Rev. B 65 014112
[17] Herrero C P 2003 J. Phys.: Condens. Matter 15 475
[18] Draeger E W and Ceperley D M 2000 Phys. Rev. B 61 12094
[19] Arms D A, Shah R S and Simmons R O 2003 Phys. Rev. B 67 094303
[20] Venkataraman C T and Simmons R O 2003 Phys. Rev. B 68 224303
[21] Debernardi A and Cardona M 1996 Phys. Rev. B 54 11305
[22] Cardona M 2000 Phys. Status Solidi b 220 5
[23] Zhernov A P 2000 Low Temp. Phys. 26 908
[24] Herrero C P 2000 Phys. Status Solidi b 220 857
[25] Herrero C P 2001 J. Phys.: Condens. Matter 13 5127
[26] Arnold R H and Pipes P B 1980 Phys. Rev. B 21 5156
[27] Sullivan N and Landesman A 1982 Phys. Rev. B 25 3396
[28] Mullin W J 1968 Phys. Rev. Lett. 20 254
[29] Herrero C P 2006 J. Phys.: Condens. Matter 18 3469
[30] Aziz R A, Janzen A R and Moldover M R 1995 Phys. Rev. Lett. 74 1586
[31] Bruch L W and McGee I J 1973 J. Chem. Phys. 59 409
[32] Loubeyre P 1987 Phys. Rev. Lett. 58 1857
[33] Gillan M J 1988 Phil. Mag. A 58 257
[34] Noya J C, Herrero C P and Ramı́rez R 1996 Phys. Rev. B 53 9869
[35] Chandler D and Wolynes P G 1981 J. Chem. Phys. 74 4078
[36] Singer K and Smith W 1988 Mol. Phys. 64 1215
[37] Noya J C, Herrero C P and Ramı́rez R 1997 Phys. Rev. B 56 237
[38] Landau L D and Lifshitz E M 1980 Statistical Physics 3rd edn (Oxford: Pergamon)
[39] Thomlinson W, Eckert J and Shirane G 1978 Phys. Rev. B 18 1120
[40] Stewart J W 1963 Phys. Rev. 129 1950
[41] Herrero C P and Ramı́rez R 2001 Phys. Rev. B 63 024103
[42] Diallo S O, Pearce J V, Azuah R T and Glyde H R 2004 Phys. Rev. Lett. 93 075301
[43] Vegard L 1921 Z. Phys. 5 17
[44] Denton A R and Ashcroft N W 1991 Phys. Rev. A 43 3161
[45] Karasevskii A I and Holzapfel W B 2003 Phys. Rev. B 67 224301
[46] Lawler H M, Chang E K and Shirley E L 2004 Phys. Rev. B 69 174104
[47] Herrero C P and Ramı́rez R 2005 Phys. Rev. B 71 174111
[48] Pollock E L, Bruce T A, Chester G V and Krumhansl J A 1972 Phys. Rev. B 5 4180
[49] Holian B L, Gwinn W D, Luntz A C and Alder B J 1973 J. Chem. Phys. 59 5444

10

http://dx.doi.org/10.1126/science.282.5390.930
http://dx.doi.org/10.1103/RevModPhys.67.279
http://dx.doi.org/10.1103/PhysRevB.58.206
http://dx.doi.org/10.1103/PhysRevLett.77.115
http://dx.doi.org/10.1063/1.456419
http://dx.doi.org/10.1103/PhysRevLett.72.1854
http://dx.doi.org/10.1063/1.1386657
http://dx.doi.org/10.1103/PhysRevB.47.14923
http://dx.doi.org/10.1103/PhysRevB.51.2723
http://dx.doi.org/10.1063/1.1471243
http://dx.doi.org/10.1103/PhysRevE.65.031203
http://dx.doi.org/10.1103/PhysRevB.65.014112
http://dx.doi.org/10.1088/0953-8984/15/3/312
http://dx.doi.org/10.1103/PhysRevB.61.12094
http://dx.doi.org/10.1103/PhysRevB.67.094303
http://dx.doi.org/10.1103/PhysRevB.68.224303
http://dx.doi.org/10.1103/PhysRevB.54.11305
http://dx.doi.org/10.1002/1521-3951(200007)220:1<5::AID-PSSB5>3.0.CO;2-K
http://dx.doi.org/10.1063/1.1334443
http://dx.doi.org/10.1002/(SICI)1521-3951(200008)220:2<857::AID-PSSB857>3.0.CO;2-W
http://dx.doi.org/10.1088/0953-8984/13/22/309
http://dx.doi.org/10.1103/PhysRevB.21.5156
http://dx.doi.org/10.1103/PhysRevB.25.3396
http://dx.doi.org/10.1103/PhysRevLett.20.254
http://dx.doi.org/10.1088/0953-8984/18/13/014
http://dx.doi.org/10.1103/PhysRevLett.74.1586
http://dx.doi.org/10.1063/1.1679820
http://dx.doi.org/10.1103/PhysRevLett.58.1857
http://dx.doi.org/10.1103/PhysRevB.53.9869
http://dx.doi.org/10.1063/1.441588
http://dx.doi.org/10.1080/00268978800100823
http://dx.doi.org/10.1103/PhysRevB.56.237
http://dx.doi.org/10.1103/PhysRevB.18.1120
http://dx.doi.org/10.1103/PhysRev.129.1950
http://dx.doi.org/10.1103/PhysRevB.63.024103
http://dx.doi.org/10.1103/PhysRevLett.93.075301
http://dx.doi.org/10.1007/BF01349680
http://dx.doi.org/10.1103/PhysRevA.43.3161
http://dx.doi.org/10.1103/PhysRevB.67.224301
http://dx.doi.org/10.1103/PhysRevB.69.174104
http://dx.doi.org/10.1103/PhysRevB.71.174111
http://dx.doi.org/10.1103/PhysRevB.5.4180
http://dx.doi.org/10.1063/1.1679895

	1. Introduction
	2. Method
	3. Results
	4. Discussion
	Acknowledgments
	References

